CSE 114A: Fall 2021

Introduction to Functional
Programming

Higher-Order Functions

Owen Arden
UC Santa Cruz

Based on course materials developed by Nadia Polikarpova

Plan for this week

Last week:

« user-defined data types
o and how to manipulate them using pattern

matching and recursion
« how to make recursive functions more efficient with tail

recursion

This week:
« code reuse with higher-order functions (HOFs)

« some useful HOFs: map, filter, and fold

Recursion is good

e Recursive code mirrors recursive data

o Base constructor -> Base case
o Inductive constructor -> Inductive case
(with recursive call)

» But it can get kinda repetitive!

Example: evens

Let’s write a function evens:

-- evens [] =>[]

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens [] = ...

evens (X:Xs) = ...

Example: four-letter words

Let’s write a function fourChars:

-- fourChars [] ==> []

-- fourChars ["1","must", "do", "work"] ==> ["must", "work"]
fourChars :: [String] -> [String]

fourChars [] = ...

fourChars (x:xs) = ...

Yikes, Most Code is the Same!

foo [] =[]

foo (x:xs)
| x mod 2 == = x : foo xs
| otherwise = foo xs
foo [] =[]
foo (x:xs)
| length x == 4 = x : foo xs
| otherwise = foo xs

Only difference is condition

e x mod 2 == Ovslength x ==

Moral of the day

D.R.Y. Don’t Repeat Yourself!

Can we

« reuse the general pattern and
e substitute in the custom condition?

HOFs to the rescue!

General Pattern

« expressed as a higher-order function
« takes customizable operations as arguments

Specific Operation
 passed in as an argument to the HOF

The “filter” pattern

evens [] =1 fourChars [] =11
evens (x:xs) fourChars (x:xs)
| x ‘mod” 2 ==0 =x : evens xs | length x == 4 = x : fourChars xs

| otherwise evens Xxs | otherwise = fourChars xs
filter f [] =[]
filter f (x:ixs)
| fx = x : filter f xs
| otherwise = filter f xs

Use the filter pattern
to avoid duplicating code!

The “filter” pattern

General Pattern

o HOF filter
« Recursively traverse list and pick out elements that satisfy a predicate

Specific Operation

e Predicates isEven and isFour

filter £ [] =[]
filter f (x:xs)
| f x = x : filter f xs
| otherwise = filter f xs
evens = filter isEven fourChars = filter isFour
where where
isEven x = x ‘mod’ 2 == isFour x = length x ==

Let’s talk about types

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs

where
isEven :: Int -> Bool
isEven x = x ‘mod 2 ==
filter :: ???

Let’s talk about types

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs

where
isEven :: Int -> Bool
isEven x = x ‘mod’ 2 == 0

filter :: ???

Let’s talk about types

-- fourChars ["1","must","do", "work"] ==> ["must", "work"]
fourChars :: [String] -> [String]
fourChars xs = filter isFour xs

where
isFour :: String -> Bool
isFour x = length x == 4
filter :: ???

Let’s talk about types

Uh oh! So what’s the type of filter?
filter :: (Int -> Bool) -> [Int] -> [Int] -- 2?7
filter :: (String -> Bool) -> [String] -> [String] -- ???

« It does not care what the list elements are
o as long as the predicate can handle them
« It’s type is polymorphic (generic) in the type of list elements
-- For any type “a’
-- 1f you give me a predicate on “a’s
-- and a List of "a’s,
-- I'LlL give you back a list of "a’s
filter :: (a -> Bool) -> [a] -> [a]

Example: all caps

Lets write a function shout:

-- shout [] ==>[]

-- shout ['h','e","'L","L",'0"] ==> ['H',"E',"'L',"'L"','0"]
shout :: [Char] -> [Char]

shout [] = ...

shout (x:xs) = ...

Example: squares

Lets write a function squares:

-- squares [] ==> []

-- squares [1,2,3,4] ==> [1,4,9,16]
squares :: [Int] -> [Int]

squares [] = ...

squares (X:Xs)

Yikes, Most Code is the Same!

Lets rename the functions to f00:

-- shout

foo [] []

foo (x:xs) = toUpper x : foo xs

-- squares
foo [] =[]
foo (x:xs) = (x * x) : foo xs

Lets refactor into the common pattern

pattern = ...

The “map” pattern

shout []
shout (x:xs)

[1 squares [] [1

toUpper x : shout xs | | squares (x:xs)

(x#x) : squares xs

[l

f x : map f xs

map f []
map f (x:xs)

The map Pattern
General Pattern

« HOF map
« Apply a transformation f to each element of a list
Specific Operations

« Transformations toUpper and \x -> x * x

The “map” pattern

map f [] =[]
map f (x:xs) = f x : map f xs
Lets refactor shout and squares

shout =map ...

squares = map ...

[1
f x : map f xs

map f []
map f (x:xs)

shout = map (\x -> toUpper x) ’ ‘ squares = map (\x —> x*x)

QUIZ

What is the type of map? *

map f [] =[]
map f (x:xs) = f x : map f xs

(A) (Char -> Char) -> [Char] -> [Char]

(B) (Int -> Int) -> [Int] -> [Int]

(©) (a -> a) -> [a] -> [a]

(D) (a -> b) -> [a] -> [b]

(E) (@ -> b) -> [c] -> [d]
http://tiny.cc/cse116-map-ind

20

QUIZ

What is the type of map? *

map f [] =[]
map f (x:xs) = f x : map f xs

(A) (Char -> Char) -> [Char] -> [Char]

(B) (Int -> Int) -> [Int] -> [Int]

(©) (a -> a) -> [a] -> [a]

(D) (a -> b) -> [a] -> [b]

(E) (3 -> b) -> [c] -> [d]
http://tiny.cc/cse116-map-grp

21

The “map” pattern

-- For any types “a and "b"

-- if you give me a transformation from “a’ to b~
-- and a list of “a’s,

-- I'LL give you back a list of "b's

map :: (a -> b) -> [a] -> [b]

Type says it all!

« The only meaningful thing a function of this type can do is apply its first
argument to elements of the list (Hoogle it!)

Things to try at home:

« canyou write a functionmap' :: (a -> b) -> [a] -> [b] whose
behavior is different from map?

« canyou write a functionmap' :: (a -> b) -> [a] -> [b]such

thatmap' f Xs returns a list whose elements are not inmap f xs?
22

QUIZ

What is the value of quiz? *

map :: (a -> b) -> [a] -> [b]

quiz = map (\(x, y) -> x +y) [1, 2, 3]

O k4

O ®Bs

O (C) Syntax Error

O (D) Type Error

O (E) None of the above

-
l -
http://tiny.cc/cse116-quiz-ind

23

QUIZ

What is the value of quiz? *

map :: (a -> b) -> [a] -> [b]

quiz = map (\(x, y) -> x +y) [1, 2, 3]

O w246
O ® B3l
O () Syntax Error

O (D) Type Error

O (E) None of the above

http://tiny.cc/cse116-quiz-grp

24

Don’t Repeat Yourself

Benefits of factoring code with HOFs:
» Reuse iteration pattern

o think in terms of standard patterns

o less to write

o easier to communicate

« Avoid bugs due to repetition

25

Recall: length of a list

-- Llen [] => 0

-- Llen ["carne”, "asada"] ==> 2
len :: [a] -> Int

len [] =0

len (x:xs) = 1 + len xs

26

Recall: summing a list

-- sum [] ==> 0

-- sum [1,2,3] ==> 6
sum :: [Int] -> Int

sum [] =0

sum (X:XS) = X + sum Xs

27

Example: string concatenation

Let’s write a function cat:

--cat [] ==>""

-- cat ["carne","asada", "torta"] ==> "carneasadatorta"”

cat :: [String] -> String
cat [] = ...
cat (x:xs) = ...

28

Can you spot the pattern?

-- Llen
foo []
foo (x:xs)

[}
[l

+ foo xs

-- sum
foo []
foo (x:xs)

I
X ©

+ foo xs

-- cat
foo []
foo (x:xs)

++ foo xs

n
x

pattern = ...

29

The “fold-right” pattern

len [] =0 sum [] =0 cat [] = un
len (x:xs) = 1 + len xs || sum (x:xs) = x + sum xs || cat (x:xs) = x ++ sum Xxs
foldr f b [] b

foldr f b (x:xs)

f x (foldr f b xs)

The foldr Pattern

General Pattern

o Recurse on tail

« Combine result with the head using some binary operation

30

The “fold-right” pattern

foldr £ b []
foldr £ b (x:xs)

b

f x (foldr f b xs)

Let’s refactor sum, len and cat:

sum = foldr ...

cat

len

foldr ...

foldr ...

Factor the recursion out!

31

The “fold-right” pattern

foldr f b
foldr f b

[]

(x:xs)

-h

x (foldr f b xs)

|len=

foldr (\x

-> 1+n) 0 ‘

| sum

foldr (\x

-> x+n) 0

| cat

foldr (\x

=> X ++ n) “”

You can write it more clearly as

sum
cat

foldr (+) ©
foldr (++) ""

32

The “fold-right” pattern

foldr f b
foldr f b

[]

(x:xs)

-h

x (foldr f b xs)

|len=

foldr (\x

-> 1+mn) 0 ‘

| sum

foldr (\x

-> x+n) 0 ‘

| cat

foldr (\x

-> X ++ n) “”

You can write it more clearly as

sum
cat

foldr (+) ©
foldr (++) "

33

QUIZ

What does this evaluate to? *

foldr f b [] b
foldr f b (x:xs) = f x (foldr f b xs)

quiz = foldr (:) [] [1,2,3]
O (A) Type error

O ®M23

O © 1821

O (o) [BL2100

O ® 1211
http://tiny.cc/cse116-foldeval-ind

34

QUIZ

What does this evaluate to? *

foldr f b [] b
foldr f b (x:xs) = f x (foldr f b xs)

quiz = foldr (:) [] [1,2,3]

O (A) Type error

O ® 123
O ©B21

O © [EL20]

O (® 211)
http://tiny.cc/cse116-foldeval-grp

35

The “fold-right” pattern

foldr £ b [] b
foldr £ b (x:xs) = f x (foldr f b xs)

foldr (:) [] [1,2,3]
==> (:) 1 (foldr (:) [] [2, 31)
==> (:) 1 ((:) 2 (foldr (:) [1 [31))
==> (:) 1 ((:) 2 ((:) 3 (foldr (:) [1[D))
==> (1) 1 ((:) 2 ((:) 3 1[1))
= 1:(2:@G:[1))
== [1) 13]

36

The “fold-right” pattern

foldr £ b [x1, x2, x3, x4]

==> f x1 (foldr f b [x2, x3, x4])

==> f x1 (f x2 (foldr f b [x3, x4]))

==> f x1 (f x2 (f x3 (foldr f b [x4])))

==> f x1 (f x2 (f x3 (f x4 (foldr £ b []1))))
==> f x1 (f x2 (f x3 (f x4 b)))

Accumulate the values from the right
For example:

foldr (+) © [1, 2, 3, 4]
==> 1 + (foldr (+) 1 [2, 3, 4])

==> 1 + (2 + (foldr (+) @ [3, 41))

==> 1 + (2 + (3 + (foldr (+) 0 [4])))

==> 1+ (2 + (3 + (4 + (foldr (+) @ [])))
==> 1+ (2 + (3 + (4 + 0)))

37

QUIZ

What is the most general type of foldr? *

foldr f b [] b
foldr f b (x:xs) = f x (foldr f b xs)

O (A)(@>a->a)->a->[a]->a
O (B)(a>a->b)->a->[a]>b

O (©(@->b->a)>b->[a]->b

O (D) (@>b->b)->b->[a]>b

O | (b->a->b)->b->[a]l->b http:/tiny.cc/cse116-foldtype-ind

38

QUIZ

What is the most general type of foldr? *

foldr f b [] b
foldr f b (x:xs) = f x (foldr f b xs)

O W(@>a>a)>a>[al->a
O (B)(a>a->b)->a->[a]>b
O (©)(@a>b->a)->b->[a]->b

O ©)@>b->b)>b->a]->b

O (E)(b>a->b)>b->[a]->b http://tiny.cc/cse116-foldtype-grp

39

The “fold-right” pattern

Is foldr tail recursive?

Answer: No! It calls the binary operations on the results of the recursive call

40

What about tail-recursive versions?

Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR = ...

41

What about tail-recursive versions?

Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR xs = helper 0 xs
where
helper acc []
helper acc (x:xs)

acc
helper (acc + x) xs

42

What about tail-recursive versions?

Lets run SUmTR to see how it works

sumTR [1,2,3]
==> helper 0 [1,2,3]

==> helper 1 [2,3] -- 0+ 1 ==>1
==> helper 3 [31] -- 1+ 2 ==>3
==> helper 6 [] --3+3==>6
==> 6

Note: helper directly returns the result of recursive call!

What about tail-recursive versions?
Let’s write tail-recursive cat!

catTR :: [String] -> String

catTR = ...

What about tail-recursive versions?

Let’s write tail-recursive cat!

catTR :: [String] -> String

catTR xs = helper "" xs
where
helper acc [] = acc

helper acc (x:xs) = helper (acc ++ X) Xs

45

What about tail-recursive versions?

Lets run catTR to s

catTR

> helper
> helper
> helper
> helper
> "carneas

ee how it works

["carne", "asada", "torta"]
["carne", "asada", "torta"]

carne" ["asada", "torta"]
carneasada" ["torta"]
carneasadatorta” [1]

adatorta”

Note: helper directly returns the result of recursive call!

46
Can you spot the pattern?
-- sumTR
foo xs = helper 0 xs
where
helper acc [] = acc
helper acc (x:xs) = helper (acc + x) Xxs
-- catTR
foo xs = helper "" xs
where
helper acc [] = acc
helper acc (x:xs) = helper (acc ++ X) Xs
pattern = ...
47

The “fold-left” pattern

sum xs = helper @ xs cat xs = helper “” xs
where where
helper acc [] = acc helper acc [] = acc
helper acc (x:xs) = helper (acc + x) Xxs helper acc (x:xs) = helper (acc ++ x) xs
foldl f b xs = helper b xs
where

helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

General Pattern

« Use a helper

The foldl Pattern

function with an extra accumulator argument

» To compute new accumulator, combine current accumulator

with the hea

d using some binary operation

48

The “fold-left” pattern

foldl f b xs = helper b xs
where
helper acc [] = acc

helper acc (x:xs) = helper (f acc x) xs

Let’s refactor sumTR and catTR:

sumTR = foldl ...

catTR = foldl ...

Factor the tail-recursion out!

49

QUIZ

What does this evaluate to? *

foldl f b xs
where

helper b xs

helper acc [] = acc

helper acc (x:xs) = helper (f acc x) xs

quiz = foldl (:) [] [1,2,3]

O (A) Type error
O ®n23
O ©B21
O O &1
O ® 281

http://tiny.cc/cse116-foldl-ind

50

QUIZ

What does this evaluate to? *

foldl f b xs = helper b xs
where
helper acc [] = acc

helper acc (x:xs) = helper (f acc x) xs

quiz = foldl (:) [] [1,2,3]

O (A) Type error
O ®nh23
O ©B21
O @) szl

O ® 231

http:/tiny.cc/cse116-foldl-grp

51

QUIZ

What does this evaluate to? *

foldl f b xs = helper b xs
where
helper acc [] = acc

helper acc (x:xs) = helper (f acc x) xs

quiz = foldl (\xs x -> x : xs) [] [1,2,3]

O (A) Type error
O ®n23
O ©B21
O (o) islizn

O © M2

http://tiny.cc/cse116-foldl2-ind 2

QUIZ

What does this evaluate to? *

foldl f b xs = helper b xs
where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

quiz = foldl (\xs x -> x : xs) [] [1,2,3]
O (A) Type error

O ®n23

O ©B21

O @B

O ©® M1

http://tiny.cc/cse116-foldi2-grp 3

The “fold-left” pattern

foldl £ b [x1, x2, x3, x4]
==> helper b [x1, x2, x3, x4]
==> helper (f b x1) [x2, x3, x4]
==> helper (f (f b x1) x2) [x3, x4]
==> helper (f (f (f b x1) x2) x3) [x4]
==> helper (f (f (f (f b x1) x2) x3) x4) []
==> (f (f (f (f b x1) x2) x3) x4)

Accumulate the values from the left

For example:

foldl (+) © [1, 2, 3, 4]
==> helper 0 [1, 2, 3, 4]
==> helper (0 + 1) [2, 3, 4]
==> helper ((0 + 1) + 2) [3, 4]
==> helper (((© + 1) + 2) + 3) [4]
==> helper ((((© + 1) + 2) + 3) + 4) []
==> ((((0 + 1) + 2) + 3) + 4)

54

Left vs. Right

foldl £ b [x1, x2, x3] ==> f (f (f b x1) x2) x3 -- Left
foldr £ b [x1, x2, x3] ==> f x1 (f x2 (f x3 b)) -- Right

For example:
foldl (+) © [1, 2, 3] ==> ((0 + 1) + 2) + 3 -- Left

foldr (+) © [1, 2, 3] ==> 1+ (2 + (3 +0)) -- Right

Different types!
foldl :: (b -> a ->b) ->b ->[a] ->b -- Left

foldr :: (a -> b ->b) ->b -> [a] -> b -- Right
55

Useful HOF: flip

-- you can write
foldl (\xs x -> x : xs) [] [1,2,3]

-- more concisely Llike so:
foldl (flip (:)) [1[2,2,3]
What is the type of f1ip?

flip :: (@ ->b ->c¢c) ->b ->a -> ¢

56

Useful HOF: compose

-- you can write
map (\x -> f (g x)) ys

-- more concisely Like so:

map (f . g) ys
What is the type of (.)?

(.) :: (b ->c) ->(a->b) ->a->c

57

Higher Order Functions

Iteration patterns over collections:

 Filter values in a collection given a predicate

o Map (iterate) a given transformation over a collection

» Fold (reduce) a collection into a value, given a binary
operation to combine results

Useful helper HOFs:

o Flip the order of function’s (first two) arguments
o Compose two functions

58

Higher Order Functions

HOFs can be put into libraries to enable modularity

« Data structure library implements map, filter, fold for its
collections

° generic efficient implementation

o generic optimizations: map f (map g xs) --> map
(f.g) xs

» Data structure clients use HOFs with specific operations
> no need to know the implementation of the collection

Enabled the “big data” revolution e.g. MapReduce, Spark

59

That’s all folks!

60

